Operators and Keywords

C++ API

# inv.cc File Reference

`#include "defun-dld.h"`
`#include "error.h"`
`#include "gripes.h"`
`#include "oct-obj.h"`
`#include "ops.h"`
`#include "ov-re-diag.h"`
`#include "ov-cx-diag.h"`
`#include "ov-flt-re-diag.h"`
`#include "ov-flt-cx-diag.h"`
`#include "ov-perm.h"`
`#include "utils.h"`
Include dependency graph for inv.cc: ## Functions

DEFUN_DLD (inv, args, nargout,"-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{x} =} inv (@var{A})\n\ @deftypefnx {Loadable Function} {[@var{x}, @var{rcond}] =} inv (@var{A})\n\ Compute the inverse of the square matrix @var{A}. Return an estimate\n\ of the reciprocal condition number if requested, otherwise warn of an\n\ ill-conditioned matrix if the reciprocal condition number is small.\n\ \n\ In general it is best to avoid calculating the inverse of a matrix\n\ directly. For example, it is both faster and more accurate to solve\n\ systems of equations (@var{A}*@math{x} = @math{b}) with\n\ @code{@var{y} = @var{A} \\ @math{b}}, rather than\n\ @code{@var{y} = inv (@var{A}) * @math{b}}.\n\ \n\ If called with a sparse matrix, then in general @var{x} will be a full\n\ matrix requiring significantly more storage. Avoid forming the inverse\n\ of a sparse matrix if possible.\n\ @seealso{ldivide, rdivide}\n\ @end deftypefn")
DEFUN_DLD (inverse, args, nargout,"-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{x} =} inverse (@var{A})\n\ @deftypefnx {Loadable Function} {[@var{x}, @var{rcond}] =} inverse (@var{A})\n\ This in an alias for @code{inv}.\n\ @seealso{inv}\n\ @end deftypefn")

## Function Documentation

 DEFUN_DLD ( inv , args , nargout )
 DEFUN_DLD ( inverse , args , nargout )