Next: Complex Arithmetic, Up: Arithmetic [Contents][Index]

- Mapping Function:
**exp***(*`x`) Compute

`e^x`

for each element of`x`.To compute the matrix exponential, see Linear Algebra.

**See also:**log.

- Mapping Function:
**expm1***(*`x`) Compute

`exp (`

accurately in the neighborhood of zero.`x`) - 1**See also:**exp.

- Mapping Function:
**log***(*`x`) Compute the natural logarithm,

`ln (`

, for each element of`x`)`x`.To compute the matrix logarithm, see Linear Algebra.

- Function File:
**reallog***(*`x`) Return the real-valued natural logarithm of each element of

`x`.If any element results in a complex return value

`reallog`

aborts and issues an error.

- Mapping Function:
**log1p***(*`x`) Compute

`log (1 +`

accurately in the neighborhood of zero.`x`)

- Mapping Function:
**log10***(*`x`) Compute the base-10 logarithm of each element of

`x`.

- Mapping Function:
**log2***(*`x`) - Mapping Function:
*[*`f`,`e`] =**log2***(*`x`) Compute the base-2 logarithm of each element of

`x`.If called with two output arguments, split

`x`into binary mantissa and exponent so that`1/2 <= abs(f) < 1`

and`e`is an integer. If`x = 0`

,`f = e = 0`

.

- Function File:
**pow2***(*`x`) - Function File:
**pow2***(*`f`,`e`) With one input argument, compute 2 .^ x for each element of

`x`.With two input arguments, return f .* (2 .^ e).

- Function File:
**nextpow2***(*`x`) Compute the exponent for the smallest power of two larger than the input.

For each element in the input array

`x`, return the first integer`n`such that 2^n ≥ abs (x).

- Function File:
**realpow***(*`x`,`y`) Compute the real-valued, element-by-element power operator.

This is equivalent to

, except that`x`.^`y``realpow`

reports an error if any return value is complex.

- Mapping Function:
**sqrt***(*`x`) Compute the square root of each element of

`x`.If

`x`is negative, a complex result is returned.To compute the matrix square root, see Linear Algebra.

- Function File:
**realsqrt***(*`x`) Return the real-valued square root of each element of

`x`.If any element results in a complex return value

`realsqrt`

aborts and issues an error.

- Mapping Function:
**cbrt***(*`x`) Compute the real cube root of each element of

`x`.Unlike

, the result will be negative if`x`^(1/3)`x`is negative.**See also:**nthroot.

- Function File:
**nthroot***(*`x`,`n`) -
Compute the real (non-complex)

`n`-th root of`x`.`x`must have all real entries and`n`must be a scalar. If`n`is an even integer and`x`has negative entries then`nthroot`

aborts and issues an error.Example:

nthroot (-1, 3) ⇒ -1 (-1) ^ (1 / 3) ⇒ 0.50000 - 0.86603i

Next: Complex Arithmetic, Up: Arithmetic [Contents][Index]