Sparse.h

Go to the documentation of this file.
00001 // Template sparse classes
00002 /*
00003 
00004 Copyright (C) 2004-2012 David Bateman
00005 Copyright (C) 1998-2004 Andy Adler
00006 Copyright (C) 2010 VZLU Prague
00007 
00008 This file is part of Octave.
00009 
00010 Octave is free software; you can redistribute it and/or modify it
00011 under the terms of the GNU General Public License as published by the
00012 Free Software Foundation; either version 3 of the License, or (at your
00013 option) any later version.
00014 
00015 Octave is distributed in the hope that it will be useful, but WITHOUT
00016 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
00017 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
00018 for more details.
00019 
00020 You should have received a copy of the GNU General Public License
00021 along with Octave; see the file COPYING.  If not, see
00022 <http://www.gnu.org/licenses/>.
00023 
00024 */
00025 
00026 #if !defined (octave_Sparse_h)
00027 #define octave_Sparse_h 1
00028 
00029 #include <cassert>
00030 #include <cstddef>
00031 
00032 #include <iosfwd>
00033 #include <algorithm>
00034 
00035 #include "Array.h"
00036 #include "dim-vector.h"
00037 #include "lo-error.h"
00038 #include "lo-utils.h"
00039 
00040 #include "oct-sort.h"
00041 #include "oct-mem.h"
00042 
00043 class idx_vector;
00044 class PermMatrix;
00045 
00046 // Two dimensional sparse class.  Handles the reference counting for
00047 // all the derived classes.
00048 
00049 template <class T>
00050 class
00051 Sparse
00052 {
00053 public:
00054 
00055   typedef T element_type;
00056 
00057 protected:
00058   //--------------------------------------------------------------------
00059   // The real representation of all Sparse arrays.
00060   //--------------------------------------------------------------------
00061 
00062   class OCTAVE_API SparseRep
00063   {
00064   public:
00065 
00066     T *d;
00067     octave_idx_type *r;
00068     octave_idx_type *c;
00069     octave_idx_type nzmx;
00070     octave_idx_type nrows;
00071     octave_idx_type ncols;
00072     octave_refcount<int> count;
00073 
00074     SparseRep (void) : d (0), r (0), c (new octave_idx_type [1]), nzmx (0), nrows (0),
00075                        ncols (0), count (1) { c[0] = 0; }
00076 
00077     SparseRep (octave_idx_type n) : d (0), r (0), c (new octave_idx_type [n+1]), nzmx (0), nrows (n),
00078       ncols (n), count (1)
00079       {
00080         for (octave_idx_type i = 0; i < n + 1; i++)
00081           c[i] = 0;
00082       }
00083 
00084     SparseRep (octave_idx_type nr, octave_idx_type nc) : d (0), r (0), c (new octave_idx_type [nc+1]), nzmx (0),
00085       nrows (nr), ncols (nc), count (1)
00086       {
00087         for (octave_idx_type i = 0; i < nc + 1; i++)
00088           c[i] = 0;
00089       }
00090 
00091     SparseRep (octave_idx_type nr, octave_idx_type nc, octave_idx_type nz) : d (new T [nz]),
00092       r (new octave_idx_type [nz]), c (new octave_idx_type [nc+1]), nzmx (nz), nrows (nr),
00093       ncols (nc), count (1)
00094       {
00095         for (octave_idx_type i = 0; i < nc + 1; i++)
00096           c[i] = 0;
00097       }
00098 
00099     SparseRep (const SparseRep& a)
00100       : d (new T [a.nzmx]), r (new octave_idx_type [a.nzmx]), c (new octave_idx_type [a.ncols + 1]),
00101       nzmx (a.nzmx), nrows (a.nrows), ncols (a.ncols), count (1)
00102       {
00103         octave_idx_type nz = a.nnz ();
00104         copy_or_memcpy (nz, a.d, d);
00105         copy_or_memcpy (nz, a.r, r);
00106         copy_or_memcpy (ncols + 1, a.c, c);
00107       }
00108 
00109     ~SparseRep (void) { delete [] d; delete [] r; delete [] c; }
00110 
00111     octave_idx_type length (void) const { return nzmx; }
00112 
00113     octave_idx_type nnz (void) const { return c [ncols]; }
00114 
00115     T& elem (octave_idx_type _r, octave_idx_type _c);
00116 
00117     T celem (octave_idx_type _r, octave_idx_type _c) const;
00118 
00119     T& data (octave_idx_type i) { return d[i]; }
00120 
00121     T cdata (octave_idx_type i) const { return d[i]; }
00122 
00123     octave_idx_type& ridx (octave_idx_type i) { return r[i]; }
00124 
00125     octave_idx_type cridx (octave_idx_type i) const { return r[i]; }
00126 
00127     octave_idx_type& cidx (octave_idx_type i) { return c[i]; }
00128 
00129     octave_idx_type ccidx (octave_idx_type i) const { return c[i]; }
00130 
00131     void maybe_compress (bool remove_zeros);
00132 
00133     void change_length (octave_idx_type nz);
00134 
00135     bool indices_ok (void) const;
00136 
00137   private:
00138 
00139     // No assignment!
00140 
00141     SparseRep& operator = (const SparseRep& a);
00142   };
00143 
00144   //--------------------------------------------------------------------
00145 
00146   void make_unique (void)
00147     {
00148       if (rep->count > 1)
00149         {
00150           SparseRep *r = new SparseRep (*rep);
00151 
00152           if (--rep->count == 0)
00153             delete rep;
00154 
00155           rep = r;
00156         }
00157     }
00158 
00159 public:
00160 
00161   // !!! WARNING !!! -- these should be protected, not public.  You
00162   // should not access these data members directly!
00163 
00164   typename Sparse<T>::SparseRep *rep;
00165 
00166   dim_vector dimensions;
00167 
00168 private:
00169 
00170   typename Sparse<T>::SparseRep *nil_rep (void) const
00171     {
00172       static typename Sparse<T>::SparseRep nr;
00173       return &nr;
00174     }
00175 
00176 public:
00177 
00178   Sparse (void)
00179     : rep (nil_rep ()), dimensions (dim_vector(0,0))
00180     {
00181       rep->count++;
00182     }
00183 
00184   explicit Sparse (octave_idx_type n)
00185     : rep (new typename Sparse<T>::SparseRep (n)),
00186       dimensions (dim_vector (n, n)) { }
00187 
00188   explicit Sparse (octave_idx_type nr, octave_idx_type nc)
00189     : rep (new typename Sparse<T>::SparseRep (nr, nc)),
00190       dimensions (dim_vector (nr, nc)) { }
00191 
00192   explicit Sparse (octave_idx_type nr, octave_idx_type nc, T val);
00193 
00194   Sparse (const dim_vector& dv, octave_idx_type nz)
00195     : rep (new typename Sparse<T>::SparseRep (dv(0), dv(1), nz)),
00196     dimensions (dv) { }
00197 
00198   Sparse (octave_idx_type nr, octave_idx_type nc, octave_idx_type nz)
00199     : rep (new typename Sparse<T>::SparseRep (nr, nc, nz)),
00200       dimensions (dim_vector (nr, nc)) { }
00201 
00202   // Both SparseMatrix and SparseBoolMatrix need this ctor, and this
00203   // is their only common ancestor.
00204   explicit Sparse (const PermMatrix& a);
00205 
00206   // Type conversion case. Preserves capacity ().
00207   template <class U>
00208   Sparse (const Sparse<U>& a)
00209     : rep (new typename Sparse<T>::SparseRep (a.rep->nrows, a.rep->ncols, a.rep->nzmx)),
00210     dimensions (a.dimensions)
00211     {
00212       octave_idx_type nz = a.nnz ();
00213       std::copy (a.rep->d, a.rep->d + nz, rep->d);
00214       copy_or_memcpy (nz, a.rep->r, rep->r);
00215       copy_or_memcpy (rep->ncols + 1, a.rep->c, rep->c);
00216     }
00217 
00218   // No type conversion case.
00219   Sparse (const Sparse<T>& a)
00220     : rep (a.rep), dimensions (a.dimensions)
00221     {
00222       rep->count++;
00223     }
00224 
00225 public:
00226 
00227   Sparse (const dim_vector& dv);
00228 
00229   Sparse (const Sparse<T>& a, const dim_vector& dv);
00230 
00231   Sparse (const Array<T>& a, const idx_vector& r, const idx_vector& c,
00232           octave_idx_type nr = -1, octave_idx_type nc = -1,
00233           bool sum_terms = true, octave_idx_type nzm = -1);
00234 
00235   // Sparsify a normal matrix
00236   Sparse (const Array<T>& a);
00237 
00238   virtual ~Sparse (void);
00239 
00240   Sparse<T>& operator = (const Sparse<T>& a);
00241 
00242   // Note that nzmax and capacity are the amount of storage for
00243   // non-zero elements, while nnz is the actual number of non-zero
00244   // terms.
00245   octave_idx_type nzmax (void) const { return rep->length (); }
00246   octave_idx_type capacity (void) const { return nzmax (); }
00247   octave_idx_type nnz (void) const { return rep->nnz (); }
00248 
00249   // Querying the number of elements (incl. zeros) may overflow the index type,
00250   // so don't do it unless you really need it.
00251   octave_idx_type numel (void) const
00252     {
00253       return dimensions.safe_numel ();
00254     }
00255 
00256   octave_idx_type nelem (void) const { return capacity (); }
00257   octave_idx_type length (void) const { return numel (); }
00258 
00259   octave_idx_type dim1 (void) const { return dimensions(0); }
00260   octave_idx_type dim2 (void) const { return dimensions(1); }
00261 
00262   octave_idx_type rows (void) const { return dim1 (); }
00263   octave_idx_type cols (void) const { return dim2 (); }
00264   octave_idx_type columns (void) const { return dim2 (); }
00265 
00266   octave_idx_type get_row_index (octave_idx_type k) { return ridx (k); }
00267   octave_idx_type get_col_index (octave_idx_type k)
00268     {
00269       octave_idx_type ret = 0;
00270       while (cidx(ret+1) < k)
00271         ret++;
00272       return ret;
00273     }
00274 
00275   size_t byte_size (void) const
00276     {
00277       return (static_cast<size_t>(cols () + 1) * sizeof (octave_idx_type)
00278               + static_cast<size_t> (capacity ()) * (sizeof (T) + sizeof (octave_idx_type)));
00279     }
00280 
00281   dim_vector dims (void) const { return dimensions; }
00282 
00283   Sparse<T> squeeze (void) const { return *this; }
00284 
00285   octave_idx_type compute_index (const Array<octave_idx_type>& ra_idx) const;
00286 
00287   T range_error (const char *fcn, octave_idx_type n) const;
00288   T& range_error (const char *fcn, octave_idx_type n);
00289 
00290   T range_error (const char *fcn, octave_idx_type i, octave_idx_type j) const;
00291   T& range_error (const char *fcn, octave_idx_type i, octave_idx_type j);
00292 
00293   T range_error (const char *fcn, const Array<octave_idx_type>& ra_idx) const;
00294   T& range_error (const char *fcn, const Array<octave_idx_type>& ra_idx);
00295 
00296   // No checking, even for multiple references, ever.
00297 
00298   T& xelem (octave_idx_type n)
00299     {
00300       octave_idx_type i = n % rows (), j = n / rows();
00301       return xelem (i, j);
00302     }
00303 
00304   T xelem (octave_idx_type n) const
00305     {
00306       octave_idx_type i = n % rows (), j = n / rows();
00307       return xelem (i, j);
00308     }
00309 
00310   T& xelem (octave_idx_type i, octave_idx_type j) { return rep->elem (i, j); }
00311   T xelem (octave_idx_type i, octave_idx_type j) const { return rep->celem (i, j); }
00312 
00313   T& xelem (const Array<octave_idx_type>& ra_idx)
00314     { return xelem (compute_index (ra_idx)); }
00315 
00316   T xelem (const Array<octave_idx_type>& ra_idx) const
00317     { return xelem (compute_index (ra_idx)); }
00318 
00319   // FIXME -- would be nice to fix this so that we don't
00320   // unnecessarily force a copy, but that is not so easy, and I see no
00321   // clean way to do it.
00322 
00323   T& checkelem (octave_idx_type n)
00324     {
00325       if (n < 0 || n >= numel ())
00326         return range_error ("T& Sparse<T>::checkelem", n);
00327       else
00328         {
00329           make_unique ();
00330           return xelem (n);
00331         }
00332     }
00333 
00334   T& checkelem (octave_idx_type i, octave_idx_type j)
00335     {
00336       if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ())
00337         return range_error ("T& Sparse<T>::checkelem", i, j);
00338       else
00339         {
00340           make_unique ();
00341           return xelem (i, j);
00342         }
00343     }
00344 
00345   T& checkelem (const Array<octave_idx_type>& ra_idx)
00346     {
00347       octave_idx_type i = compute_index (ra_idx);
00348 
00349       if (i < 0)
00350         return range_error ("T& Sparse<T>::checkelem", ra_idx);
00351       else
00352         return elem (i);
00353     }
00354 
00355   T& elem (octave_idx_type n)
00356     {
00357       make_unique ();
00358       return xelem (n);
00359     }
00360 
00361   T& elem (octave_idx_type i, octave_idx_type j)
00362     {
00363       make_unique ();
00364       return xelem (i, j);
00365     }
00366 
00367   T& elem (const Array<octave_idx_type>& ra_idx)
00368     { return Sparse<T>::elem (compute_index (ra_idx)); }
00369 
00370 #if defined (BOUNDS_CHECKING)
00371   T& operator () (octave_idx_type n) { return checkelem (n); }
00372   T& operator () (octave_idx_type i, octave_idx_type j) { return checkelem (i, j); }
00373   T& operator () (const Array<octave_idx_type>& ra_idx) { return checkelem (ra_idx); }
00374 #else
00375   T& operator () (octave_idx_type n) { return elem (n); }
00376   T& operator () (octave_idx_type i, octave_idx_type j) { return elem (i, j); }
00377   T& operator () (const Array<octave_idx_type>& ra_idx) { return elem (ra_idx); }
00378 #endif
00379 
00380   T checkelem (octave_idx_type n) const
00381     {
00382       if (n < 0 || n >= numel ())
00383         return range_error ("T Sparse<T>::checkelem", n);
00384       else
00385         return xelem (n);
00386     }
00387 
00388   T checkelem (octave_idx_type i, octave_idx_type j) const
00389     {
00390       if (i < 0 || j < 0 || i >= dim1 () || j >= dim2 ())
00391         return range_error ("T Sparse<T>::checkelem", i, j);
00392       else
00393         return xelem (i, j);
00394     }
00395 
00396   T checkelem (const Array<octave_idx_type>& ra_idx) const
00397     {
00398       octave_idx_type i = compute_index (ra_idx);
00399 
00400       if (i < 0)
00401         return range_error ("T Sparse<T>::checkelem", ra_idx);
00402       else
00403         return Sparse<T>::elem (i);
00404     }
00405 
00406   T elem (octave_idx_type n) const { return xelem (n); }
00407 
00408   T elem (octave_idx_type i, octave_idx_type j) const { return xelem (i, j); }
00409 
00410   T elem (const Array<octave_idx_type>& ra_idx) const
00411     { return Sparse<T>::elem (compute_index (ra_idx)); }
00412 
00413 #if defined (BOUNDS_CHECKING)
00414   T operator () (octave_idx_type n) const { return checkelem (n); }
00415   T operator () (octave_idx_type i, octave_idx_type j) const { return checkelem (i, j); }
00416   T operator () (const Array<octave_idx_type>& ra_idx) const { return checkelem (ra_idx); }
00417 #else
00418   T operator () (octave_idx_type n) const { return elem (n); }
00419   T operator () (octave_idx_type i, octave_idx_type j) const { return elem (i, j); }
00420   T operator () (const Array<octave_idx_type>& ra_idx) const { return elem (ra_idx); }
00421 #endif
00422 
00423   Sparse<T> maybe_compress (bool remove_zeros = false)
00424     {
00425       if (remove_zeros)
00426         make_unique (); // Needs to unshare because elements are removed.
00427 
00428       rep->maybe_compress (remove_zeros);
00429       return (*this);
00430     }
00431 
00432   Sparse<T> reshape (const dim_vector& new_dims) const;
00433 
00434   Sparse<T> permute (const Array<octave_idx_type>& vec, bool inv = false) const;
00435 
00436   Sparse<T> ipermute (const Array<octave_idx_type>& vec) const
00437     { return permute (vec, true); }
00438 
00439   void resize1 (octave_idx_type n);
00440 
00441   void resize (octave_idx_type r, octave_idx_type c);
00442 
00443   void resize (const dim_vector& dv);
00444 
00445   void change_capacity (octave_idx_type nz)
00446     {
00447       if (nz < nnz ())
00448         make_unique (); // Unshare now because elements will be truncated.
00449       rep->change_length (nz);
00450     }
00451 
00452   Sparse<T>& insert (const Sparse<T>& a, octave_idx_type r, octave_idx_type c);
00453   Sparse<T>& insert (const Sparse<T>& a, const Array<octave_idx_type>& idx);
00454 
00455   bool is_square (void) const { return (dim1 () == dim2 ()); }
00456 
00457   bool is_empty (void) const { return (rows () < 1 && cols () < 1); }
00458 
00459   Sparse<T> transpose (void) const;
00460 
00461   T* data (void) { make_unique (); return rep->d; }
00462   T& data (octave_idx_type i) { make_unique (); return rep->data (i); }
00463   T* xdata (void) { return rep->d; }
00464   T& xdata (octave_idx_type i) { return rep->data (i); }
00465 
00466   T data (octave_idx_type i) const { return rep->data (i); }
00467   // FIXME -- shouldn't this be returning const T*?
00468   T* data (void) const { return rep->d; }
00469 
00470   octave_idx_type* ridx (void) { make_unique (); return rep->r; }
00471   octave_idx_type& ridx (octave_idx_type i) { make_unique (); return rep->ridx (i); }
00472   octave_idx_type* xridx (void) { return rep->r; }
00473   octave_idx_type& xridx (octave_idx_type i) { return rep->ridx (i); }
00474 
00475   octave_idx_type ridx (octave_idx_type i) const { return rep->cridx (i); }
00476   // FIXME -- shouldn't this be returning const octave_idx_type*?
00477   octave_idx_type* ridx (void) const { return rep->r; }
00478 
00479   octave_idx_type* cidx (void) { make_unique (); return rep->c; }
00480   octave_idx_type& cidx (octave_idx_type i) { make_unique (); return rep->cidx (i); }
00481   octave_idx_type* xcidx (void) { return rep->c; }
00482   octave_idx_type& xcidx (octave_idx_type i) { return rep->cidx (i); }
00483 
00484   octave_idx_type cidx (octave_idx_type i) const { return rep->ccidx (i); }
00485   // FIXME -- shouldn't this be returning const octave_idx_type*?
00486   octave_idx_type* cidx (void) const { return rep->c; }
00487 
00488   octave_idx_type ndims (void) const { return dimensions.length (); }
00489 
00490   void delete_elements (const idx_vector& i);
00491 
00492   void delete_elements (int dim, const idx_vector& i);
00493 
00494   void delete_elements (const idx_vector& i, const idx_vector& j);
00495 
00496   Sparse<T> index (const idx_vector& i, bool resize_ok = false) const;
00497 
00498   Sparse<T> index (const idx_vector& i, const idx_vector& j, bool resize_ok = false) const;
00499 
00500   void assign (const idx_vector& i, const Sparse<T>& rhs);
00501 
00502   void assign (const idx_vector& i, const idx_vector& j, const Sparse<T>& rhs);
00503 
00504   void print_info (std::ostream& os, const std::string& prefix) const;
00505 
00506   // Unsafe.  These functions exist to support the MEX interface.
00507   // You should not use them anywhere else.
00508   void *mex_get_data (void) const { return const_cast<T *> (data ()); }
00509 
00510   octave_idx_type *mex_get_ir (void) const { return const_cast<octave_idx_type *> (ridx ()); }
00511 
00512   octave_idx_type *mex_get_jc (void) const { return const_cast<octave_idx_type *> (cidx ()); }
00513 
00514   Sparse<T> sort (octave_idx_type dim = 0, sortmode mode = ASCENDING) const;
00515   Sparse<T> sort (Array<octave_idx_type> &sidx, octave_idx_type dim = 0,
00516                  sortmode mode = ASCENDING) const;
00517 
00518   Sparse<T> diag (octave_idx_type k = 0) const;
00519 
00520   // dim = -1 and dim = -2 are special; see Array<T>::cat description.
00521   static Sparse<T>
00522   cat (int dim, octave_idx_type n, const Sparse<T> *sparse_list);
00523 
00524   Array<T> array_value (void) const;
00525 
00526   template <class U, class F>
00527   Sparse<U>
00528   map (F fcn) const
00529   {
00530     Sparse<U> result;
00531     U f_zero = fcn (0.);
00532 
00533     if (f_zero != 0.)
00534       {
00535         octave_idx_type nr = rows ();
00536         octave_idx_type nc = cols ();
00537 
00538         result = Sparse<U> (nr, nc, f_zero);
00539 
00540         for (octave_idx_type j = 0; j < nc; j++)
00541           for (octave_idx_type i = cidx(j); i < cidx (j+1); i++)
00542             {
00543               octave_quit ();
00544               /* Use data instead of elem for better performance.  */
00545               result.data (ridx (i) + j * nr) = fcn (data(i));
00546             }
00547 
00548         result.maybe_compress (true);
00549       }
00550     else
00551       {
00552         octave_idx_type nz = nnz ();
00553         octave_idx_type nr = rows ();
00554         octave_idx_type nc = cols ();
00555 
00556         result = Sparse<U> (nr, nc, nz);
00557         octave_idx_type ii = 0;
00558         result.cidx (ii) = 0;
00559 
00560         for (octave_idx_type j = 0; j < nc; j++)
00561           {
00562             for (octave_idx_type i = cidx(j); i < cidx (j+1); i++)
00563               {
00564                 U val = fcn (data (i));
00565                 if (val != 0.0)
00566                   {
00567                     result.data (ii) = val;
00568                     result.ridx (ii++) = ridx (i);
00569                   }
00570                 octave_quit ();
00571               }
00572             result.cidx (j+1) = ii;
00573           }
00574 
00575         result.maybe_compress (false);
00576       }
00577 
00578     return result;
00579   }
00580 
00581   // Overloads for function references.
00582   template <class U>
00583   Sparse<U>
00584   map (U (&fcn) (T)) const
00585   { return map<U, U (&) (T)> (fcn); }
00586 
00587   template <class U>
00588   Sparse<U>
00589   map (U (&fcn) (const T&)) const
00590   { return map<U, U (&) (const T&)> (fcn); }
00591 
00592   bool indices_ok (void) const { return rep->indices_ok (); }
00593 };
00594 
00595 template<typename T>
00596 std::istream&
00597 read_sparse_matrix (std::istream& is, Sparse<T>& a,
00598                     T (*read_fcn) (std::istream&))
00599 {
00600   octave_idx_type nr = a.rows ();
00601   octave_idx_type nc = a.cols ();
00602   octave_idx_type nz = a.nzmax ();
00603 
00604   if (nr > 0 && nc > 0)
00605     {
00606       octave_idx_type itmp;
00607       octave_idx_type jtmp;
00608       octave_idx_type iold = 0;
00609       octave_idx_type jold = 0;
00610       octave_idx_type ii = 0;
00611       T tmp;
00612 
00613       a.cidx (0) = 0;
00614       for (octave_idx_type i = 0; i < nz; i++)
00615         {
00616           itmp = 0; jtmp = 0;
00617           is >> itmp;
00618           itmp--;
00619 
00620           is >> jtmp;
00621           jtmp--;
00622 
00623           if (itmp < 0 || itmp >= nr)
00624             {
00625               (*current_liboctave_error_handler)
00626                 ("invalid sparse matrix: row index = %d out of range",
00627                  itmp + 1);
00628               is.setstate (std::ios::failbit);
00629               goto done;
00630             }
00631 
00632           if (jtmp < 0 || jtmp >= nc)
00633             {
00634               (*current_liboctave_error_handler)
00635                 ("invalid sparse matrix: column index = %d out of range",
00636                  jtmp + 1);
00637               is.setstate (std::ios::failbit);
00638               goto done;
00639             }
00640 
00641           if (jtmp < jold)
00642             {
00643               (*current_liboctave_error_handler)
00644                 ("invalid sparse matrix: column indices must appear in ascending order");
00645               is.setstate (std::ios::failbit);
00646               goto done;
00647             }
00648           else if (jtmp > jold)
00649             {
00650               for (octave_idx_type j = jold; j < jtmp; j++)
00651                 a.cidx(j+1) = ii;
00652             }
00653           else if (itmp < iold)
00654             {
00655               (*current_liboctave_error_handler)
00656                 ("invalid sparse matrix: row indices must appear in ascending order in each column");
00657               is.setstate (std::ios::failbit);
00658               goto done;
00659             }
00660 
00661           iold = itmp;
00662           jold = jtmp;
00663 
00664           tmp = read_fcn (is);
00665 
00666           if (is)
00667             {
00668               a.data (ii) = tmp;
00669               a.ridx (ii++) = itmp;
00670             }
00671           else
00672             goto done;
00673         }
00674 
00675       for (octave_idx_type j = jold; j < nc; j++)
00676         a.cidx(j+1) = ii;
00677     }
00678 
00679  done:
00680 
00681   return is;
00682 }
00683 
00684 #endif
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Friends Defines